Discrete Probability Distributions

• Beginning Reading Chapter 4
• Overview and Introduction
 – Last chapter, probability of specific events
 – This chapter, probability models based on the probabilities of certain events from past data.
Random Variable

• Let S be a sample space with a probability measure P.
• A real random variable x is a process of assigning a real number $x(s)$ to every outcome $s \in S$.
• Two types: Discrete and Continuous
Example

• Rolling a dice where each side is one color
 Sample space \((S) = \) each color \((s) \)
 \[
 x(s) = \begin{cases}
 1 & s = \text{red} \\
 2 & s = \text{blue} \\
 \ldots & \ldots \\
 6 & s = \text{green}
 \end{cases}
 \]

• Discrete set of values with specified probabilities
Example

• Number of heads when tossing 4 coins.
 \[S = \text{the set of all possible outcomes (s)} \]
 \[
 \begin{align*}
 0 & \quad s = \{TTTT\} \\
 1 & \quad s = \{HHTT, THTT, TTHT, TTTT\} \\
 2 & \quad s = \{HHTT, HTHT, HTTH, THTH, TTHH, TTHT\} \\
 3 & \quad s = \{THHH, HTHH, HHTH, HHHT\} \\
 4 & \quad s = \{HHHH\}
 \end{align*}
 \]

• Discrete set of values with specified probabilities
Probability-Mass Function

• If X is a discrete random variable, the function given by \(f(x) = p(x=x) \) for each \(x \) with in the range of \(x \) is called the probability distribution of \(x \)
• Probability of an event is between 0 and 1
• Sum of all the probabilities is exactly 1
Probability-Mass Function

• 6 Color Die Example

\[F(x) = \begin{cases}
1/6 & x = \{\text{red, blue, ..., green}\} \\
0 & \text{otherwise}.
\end{cases} \]
• 4 Coin Example

\[
F(x) = \begin{cases}
1/16 & \text{if 0 heads} \\
4/16 & \text{if 1 head} \\
6/16 & \text{if 2 heads} \\
4/16 & \text{if 3 heads} \\
1/16 & \text{if 4 heads} \\
0 & \text{otherwise}
\end{cases}
\]
Experiment With 4 Coins

• As more tests are preformed, what is the relationship between the actual frequency of the test and the probability distribution?
• What does the probability-mass distribution look like with more coins in each toss? An infinite number of coins?
Probability and Frequency Distributions

• Frequency distribution is the actual sample proportion
• Probability distribution can be thought of as a frequency distribution with an infinitely large sample
• Goodness-of-fit test is used to compare the observed sample-frequency to the probability distribution.
Expected Value

- For a discrete random variable

\[E(x) \equiv \mu = \sum_{i=1}^{R} x_i P(X=x_i) \]

- What is the expected value of a dice?
Variance

• Analogous to sample variance \((s^2)\)
• For a discrete random variable \((X)\) with mean \(\mu\)

\[
\text{Var}(X) = \mathbb{E}[(X - \mu)^2].
\]
95% Rule

• Approximately 95% of the probability mass falls within 2 sigma
Cumulative-Distribution Function (CFD)

• A CFD of a discrete random variable X is denoted by $F(X)$ and for a specific value x of X, is defined by $P(X \leq x)$ and denoted by $F(x)$

• Remember big X is the set of all x values

• Example
Permutations and Combinations

• Permutations – number of unique sequences of elements selected from a finite set

 $N = \text{number of items}, \; r = \text{number to be selected}$

 $$P(n, r) = \frac{n!}{(n - r)!}.$$

 If $N = R$ then how many permutations do you get?
Permutations and Combinations

• Combinations – number of unique combinations regardless of the order selected from a finite set
 \[C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}. \]

 If all four elements are selected at once and order doesn’t matter then how many combinations are there?

 If 3 objects are selected out of 7 and the order doesn’t matter then how many combinations are there?